.825(1.6+x)(1.8-x)=2.6x+x^2

Simple and best practice solution for .825(1.6+x)(1.8-x)=2.6x+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .825(1.6+x)(1.8-x)=2.6x+x^2 equation:



.825(1.6+x)(1.8-x)=2.6x+x^2
We move all terms to the left:
.825(1.6+x)(1.8-x)-(2.6x+x^2)=0
We add all the numbers together, and all the variables
-(2.6x+x^2)+.825(x+1.6)(-1x+1.8)=0
We get rid of parentheses
-x^2-2.6x+.825(x+1.6)(-1x+1.8)=0
We multiply parentheses ..
-x^2+.825(-1x^2+1.8x-1.6x+2.88)-2.6x=0
We add all the numbers together, and all the variables
-1x^2+.825(-1x^2+1.8x-1.6x+2.88)-2.6x=0
We multiply parentheses
-1x^2-0.825x^2+0.825x-0.825x-2.6x+2.376=0
We add all the numbers together, and all the variables
-1.825x^2-2.6x+2.376=0
a = -1.825; b = -2.6; c = +2.376;
Δ = b2-4ac
Δ = -2.62-4·(-1.825)·2.376
Δ = 24.1048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2.6)-\sqrt{24.1048}}{2*-1.825}=\frac{2.6-\sqrt{24.1048}}{-3.65} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2.6)+\sqrt{24.1048}}{2*-1.825}=\frac{2.6+\sqrt{24.1048}}{-3.65} $

See similar equations:

| 6x13=(6x6)+(6x7) | | /−3x−3=−3(x+1) | | 16x^{2}+10x-27=-6x+5 | | 3x+2(x+5)=8x-8 | | 1. 6x–7=4x+1 | | 2x^2-6x+14-10=0 | | 1/z=2z | | 2+n=17n | | 1152/x=96 | | 5(3x-1)+3(3x-3)=3x+28 | | 24e=120 | | –12=3(4c+5) | | 0,25x+7=16 | | 15y=9y+54 | | -36+6+y=-1+11 | | 0.88^x=0.5 | | 4y+8=1-5y | | 2(x5)=-24 | | a-27/17=10 | | -5(3x-2=-20 | | 3x-5*2x-1=3x+1*2x-4 | | 0.3x=2000 | | 5x+20=2x-47 | | 90+10x+20=180 | | d+4/5=25 | | 2x^2-6x+14=10 | | 36(39)=60x+10 | | 12(x-3)=8x-4 | | x^2+x-34=0 | | 15^(7y)=6 | | -y/2-7=-13 | | 5x+16=7x6 |

Equations solver categories